The Next Internet? Inside PARC’s Vision of Content Centric Networking

(Page 3 of 4)

spinoffs or commercialization agreements with industry partners. In 2006, for example, PARC licensed some of its natural language search technology to a spinoff called Powerset, which was acquired by Microsoft in 2008 for $100 million.

In 2009, after three years of design work, Jacobson’s team released CCNx, an open-source software implementation of the protocols needed to build research-stage content centric networks. The next year they released an Android version of CCNx, optimized to run on smartphones, and joined the Named Data Networking (NDN) initiative, a network of 11 university labs that won $8 million in National Science Foundation funding for further development of the CCN idea.

It’s unlikely any of that could have happened if Jacobson had tried to develop his ideas inside a company like Cisco or Packet Design. “Having worked at both large companies and startups, I came to PARC to make Content Centric Networking a reality,” Jacobson said in a 2010 statement. The lab “understands the importance of openness and collaboration to achieve success for new network architectures,” he said.

In that vein, PARC hosted the first meeting of the Emerging Networks Consortium this spring. It’s a group of big companies like Alcatel-Lucent, BT, France Telecom-Orange, Huawei, Panasonic, and Samsung who want to experiment with CCN technologies and have agreed to share what they’re learning. “That has been a good validation for us that it’s not just us or the academic sector” who are interested in CCN, says Jatinder Singh, PARC’s director of mobile innovation strategy. “A lot of these industries are actively tinkering with use cases they might want to implement.”

What might those cases be? To be clear, no one is talking yet about replacing the existing Internet with a content-centric system. That would be impractical, not to mention expensive. (And in practice, a new networking standard would probably be implemented as an “overlay” on the existing TCP/IP-based Internet, just as the Internet started out as an overlay on the telephone network.) Rather, Lunt and Singh say the CCN approach is likely to turn up first in specific applications on the edges of the network. Then, if it’s successful enough, it might filter back toward the center.

The world of wireless medical devices is one area PARC is eyeing. The traditional TCP/IP-based approach would be to equip these devices to connect to the Internet via Wi-Fi; collect their data on a centralized server; then retrieve the data from PCs or smartphones. But that comes with privacy and security hazards—and there are no common standards yet for formatting or exchanging medical data. “The medical device ecosystem is sort of fragmented,” says Singh. “You have vendors producing blood pressure monitors and scales and glucose meters, but so far there isn’t a clear mechanism for aggregating data across those devices.”

On top of that, it’s overkill to send health data up to cloud servers if it’s only needed within the confines of a single home or clinic. Imagine, instead, that your CCN-equipped smartphone is constantly polling your scale, your sleep monitor, and all your other home health devices for new data. Then when you visit your doctor, … Next Page »

Single Page Currently on Page: 1 2 3 4 previous page

Wade Roush is a contributing editor at Xconomy. Follow @wroush

Trending on Xconomy